Table 2. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$)

$\mathrm{Ru}(1)-\mathrm{C}(1)$	2.224 (7)	$\mathrm{Ru}(1)-\mathrm{C}(2)$	2.205 (6)
$\mathrm{Ru}(1)-\mathrm{C}(3)$	2.213 (7)	$\mathrm{Ru}(1)-\mathrm{C}(4)$	2.221 (7)
$\mathrm{Ru}(1)-\mathrm{C}(5)$	2.219 (7)	$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.070 (4)
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.318 (1)	$\mathrm{Ru}(1)-\mathrm{P}(2)$	2.323 (2)
$\mathrm{N}(1)-\mathrm{C}(6)$	1.146 (7)	$\mathrm{C}(6)-\mathrm{S}(1)$	1.634 (6)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	94.6 (1)	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	87.1 (1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	99.0 (1)	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(6)$	168.4 (5)
$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{S}(1)$	178.7 (6)		

final refinement (maximum $\Delta / \sigma=0.005$, mean Δ / σ $=0.000$). The largest unassigned electron density peaks ($0.87,-0.90 \mathrm{e} \AA^{-3}$) were adjacent to the Ru atom.

Fractional atomic coordinates are given in Table 1 and selected bond distances and bond angles in Table 2.* Fig. 1 shows thermal ellipsoids drawn at the 30% probability level for the title compound.

Related literature. Only one previous structural characterization of a Ru thiocyanate- N complex has been reported (Herber, Nan, Potenza, Schugar \& Bino, 1989). In the complex bis[($2,2^{\prime}$-bipyridylN, N^{\prime})thiocyanato- N]ruthenium the $\mathrm{Ru}-\mathrm{N}$ bond length is 2.055 (5) \AA, the angle at the ligand N atom is $168.2(5)^{\circ}$, and the angle $\mathrm{N}-\mathrm{C}-\mathrm{S}$ is $177.5(6)^{\circ}$.

[^0]

Fig. 1. Plot showing 30% thermal ellipsoids for the title compound.

The angles are consistent with the Ru centre in this complex and in the title compound being a good π donor (Drew, bin-Othman \& Nelson, 1976).

The author thanks Johnson Matthey Chemicals Ltd for a generous loan of ruthenium trichloride and SSIW Foundation for financial support.

References

Drew, M. G. B., bin-Othman, A. H. \& Nelson, S. M. (1976). J. Chem. Soc. Dalton Trans. pp. 1394-1399.
Herber, R. H., Nan, G., Potenza, J. A., Schugar, H. J. \& Bino, A. (1989). Inorg. Chem. 28, 938-942.

Sheldrick, G. M. (1987). SHELXTL-Plus. Release 3.4 for Nicolet $R 3 m / V$ crystallographic system. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Wilczewski, T., Bochenska, M. \& Biernat, J. F. (1981). J. Organomet. Chem. 215, 87-96.

Structure of cyclo-Tris\{dichloro- μ-[methylenebis(dimethylphosphine)-кP:кP]-[methylenebis(dimethylphosphine)- $\kappa^{2} P$ Pruthenium(II) $\}$-Ethanol-Toluene (1/1/1)

By Petrus H. van Rooyen*
Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
and Terence V. Ashworth, Sibbele Hietkamp and Neil Sparrow
National Chemical Research Laboratory, Council for Scientific and Industrial Research, PO Box 395, Pretoria 0001, South Africa

(Received 19 February 1991; accepted 16 August 1991)

Abstract. $\quad\left[\mathrm{Ru}_{3}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{P}_{2}\right)_{3}\left(\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{P}_{2}\right)_{3} \mathrm{Cl}_{6}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{8} \cdot \mathrm{C}_{2}-$ $\mathrm{H}_{6} \mathrm{O}, M_{r}=1469.9$, triclinic, $P \overline{\mathrm{I}}, a=13.208$ (2), $b=$ 13.316 (3),$\quad c=20.828$ (7) $\AA, \quad \alpha=77.04$ (2),$\quad \beta=$

[^1]0108-2701/92/030545-03\$03.00
72.53 (2),$\gamma=72.35$ (2) ${ }^{\circ}, V=3294$ (1) $\AA^{3}, Z=2, D_{x}$ $=1.48 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.7107 \AA, \quad \mu=$ $1.13 \mathrm{~mm}^{-1}, F(000)=1508, T=298 \mathrm{~K}$, final $R=$ $0.057, w R=0.048$ for 8141 reflections with $I>4 \sigma\left(I_{o}\right)$ and 614 variable parameters. The 12 -membered ring © 1992 International Union of Crystallography

Table 1. Fractional coordinates ($\times 10^{4}$) and equivalent isotropic thermal factors $\left(\AA^{2} \times 10^{3}\right)$

	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
C(1)	3026 (7)	-702 (6)	2919 (4)	45 (2)
$\mathrm{P}(1)$	3084 (2)	685 (2)	2633 (1)	44 (1)
C(2)	1786 (7)	1359 (8)	2373 (5)	66 (3)
C(3)	2838 (9)	1210 (8)	3423 (5)	68 (3)
$\mathrm{Ru}(1)$	4657 (1)	881 (1)	1769 (1)	34 (1)
$\mathrm{Cl}(1)$	4462 (2)	- 509 (2)	1258 (1)	47 (1)
$\mathrm{P}(2)$	5983 (2)	1216 (2)	776 (1)	47 (1)
C(4)	6775 (9)	2188 (8)	657 (6)	70 (3)
C(5)	6961 (8)	165 (8)	316 (5)	66 (3)
C(6)	5007 (8)	1858 (7)	256 (4)	57 (3)
$P(3)$	3794 (2)	2093 (2)	969 (1)	47 (1)
C(7)	3475 (9)	3516 (7)	1004 (6)	71 (3)
C(8)	2696 (8)	1990 (8)	655 (5)	57 (3)
$\mathrm{Cl}(2)$	4796 (2)	2304 (2)	2261 (1)	57 (1)
$\mathrm{P}(4)$	5945 (2)	-234 (2)	2357 (1)	39 (1)
C(9)	7197 (7)	244 (7)	2106 (5)	53 (3)
C(10)	5611 (8)	-290(7)	3276 (4)	51 (3)
C(11)	6391 (7)	-1644 (6)	2210 (4)	35 (2)
$\mathrm{P}(5)$	7343 (2)	-2780 (2)	2606 (1)	39 (1)
C(12)	8448 (7)	-2266 (7)	2610 (5)	51 (3)
C(13)	6703 (8)	-2976 (7)	3515 (4)	46 (2)
$\mathrm{Ru}(2)$	7884 (1)	-4288 (1)	2053 (1)	36 (1)
$\mathrm{Cl}(3)$	8364 (2)	-3145 (2)	976 (1)	55 (1)
$\mathrm{P}(6)$	9755 (2)	-4734 (2)	2046 (2)	54 (1)
C(14)	10233 (9)	-5535 (8)	2781 (5)	71 (3)
C(15)	10700 (8)	-3905 (8)	1721 (6)	77 (4)
C(16)	10179 (8)	-5618 (8)	1409 (6)	77 (3)
$\mathrm{P}(7)$	8799 (2)	-5748 (2)	1469 (2)	56 (1)
$\mathrm{C}(17)$	8782 (8)	- 5781 (8)	605 (5)	69 (3)
C(18)	8775 (10)	-7124 (7)	1878 (6)	94 (4)
$\mathrm{Cl}(4)$	7439 (2)	- 5454 (2)	3111 (1)	60 (1)
$\mathrm{P}(8)$	6151 (2)	-4235 (2)	1948 (1)	39 (1)
C(19)	6038 (8)	-5543 (7)	1896 (6)	72 (3)
C(20)	5830 (8)	-3467 (8)	1166 (4)	56 (3)
C(21)	4963 (6)	-3792 (6)	2656 (4)	37 (2)
$\mathrm{P}(9)$	3493 (2)	-3692 (2)	2774 (1)	43 (1)
C(22)	3361 (9)	-4997 (8)	2717 (6)	70 (3)
C(23)	3138 (8)	-2982 (8)	1987 (5)	61 (3)
$\mathrm{Ru}(3)$	2385 (1)	-3094 (1)	3800 (1)	38 (1)
$\mathrm{Cl}(5)$	3826 (2)	-2677 (2)	4110 (1)	51 (1)
$\mathrm{P}(10)$	2784 (3)	-4764 (2)	4453 (2)	65 (1)
C(24)	2275 (11)	- 5875 (9)	4429 (7)	103 (5)
C(25)	4137 (10)	- 5366 (10)	4595 (8)	138 (6)
C(26)	2007 (14)	-4345 (9)	5249 (6)	156 (6)
$\mathbf{P}(11)$	1373 (2)	-2983 (2)	4933 (1)	55 (1)
C(27)	1536 (10)	-2217 (10)	5492 (5)	85 (4)
C(28)	-111 (9)	-2873 (13)	5211 (6)	115 (5)
$\mathrm{Cl}(6)$	864 (2)	-3463 (2)	3536 (1)	64 (1)
$\mathrm{P}(12)$	1867 (2)	-1282 (2)	3355 (1)	46 (1)
C(29)	1067 (8)	-413 (7)	4012 (5)	64 (3)
C(30)	1032 (8)	-930 (9)	2742 (5)	66 (3)
C(31)	6449 (8)	68 (11)	4817 (4)	129 (6)
C(32)	7346 (8)	-802 (11)	4672 (4)	109 (5)
C(33)	8161 (8)	- 728 (11)	4068 (4)	118 (6)
C(34)	8078 (8)	215 (11)	3609 (4)	130 (7)
C(35)	7180 (8)	1085 (11)	3753 (4)	189 (9)
C(36)	6366 (8)	1011 (11)	4357 (4)	136 (7)
C(37)	5389 (14)	1927 (14)	4470 (10)	518 (26) \dagger
0	209 (19)	49 (31)	935 (16)	388 (17)
C(38)	201 (29)	671 (38)	361 (16)	526 (42)
C(39)	18 (13)	879 (16)	-333 (15)	292 (11)

\dagger Isotropic temperature factor.
is formed by three $\mathrm{Ru}-\mathrm{P}-\mathrm{C}-\mathrm{P}$ units, and each Ru atom also has a chelating $\mathrm{P}-\mathrm{C}-\mathrm{P}$ ligand. The compound crystallizes with toluene and ethanol molecules included in the asymmetric unit.

Experimental. The title compound was formed by treatment of a suspension of $\left[\mathrm{RuCl}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right]_{x}, \mathrm{C}_{8} \mathrm{H}_{12}$ $=1,5$-cyclooctadiene, in toluene at 383 K with $\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{PMe}_{2}$ (2.1 mole equivalents). After filtration and concentration of the toluene solution, the

Table 2. Selected bond distances (\AA) and valence angles $\left({ }^{\circ}\right)$

Fig. 1. Perspective view with atomic numbering scheme of non-H atoms of the molecule. The solvent molecules \{toluene [$\mathrm{C}(31)$ to $\mathrm{C}(37)]$ and ethanol $[\mathrm{O}, \mathrm{C}(38)$ and $\mathrm{C}(39)]\}$ are not shown.
product was recovered (60% yield) by addition of ethanol.
Recrystallization of this compound from a toluene/ethanol solution yielded diffraction-quality single crystals: crystal size $0.24 \times 0.16 \times 0.24 \mathrm{~mm}$; Enraf-Nonius CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$); lattice parameters refined using 25 reflections in the range $7.8<\theta<14.4^{\circ} ; 14320$ reflections for $3 \leq \theta \leq$ 27° in the range $0 \leq h \leq 16,-16 \leq k \leq 16,-26 \leq l$ ≤ 26 using $\omega / 2 \theta$ scans where ω changed as $(0.58+$ $0.34 \tan \theta)^{\circ}$ with a variable but maximum speed that corresponded to $5.49^{\circ} \mathrm{min}^{-1}$. Three standard reflections ($513,417,012$) measured every 60 min varied by 18.6%, linear decay correction applied. Lorentz and polarization corrections and empirical absorption correction based on the ψ scans of nine reflections were also applied (North, Phillips \& Mathews, 1968): transmission factors 0.999-0.846, average 0.925 .

Structure solution: Patterson and difference Fourier analysis using SHELX76 (Sheldrick, 1976), H atoms in calculated positions $(\mathrm{C}-\mathrm{H}=1.08 \AA$, $\mathrm{H}-\mathrm{C}-\mathrm{H}=109.5^{\circ}$). All non-H atoms except the methyl C atom of the toluene of crystallization were refined anisotropically, H atoms were assigned a common isotropic thermal parameter that refined to $U_{\text {iso }}=0.127$ (4) \AA^{2}, using 8141 reflections with $I>$ $4 \sigma\left(I_{o}\right)$, and $\sigma^{-2}(F)$ weights (Sheldrick, 1976), F mag-
nitudes, $w R=0.048$ and $R=0.057$ for 614 parameters. $(\Delta / \sigma)_{\text {max }}=0.6$, maximum residual electron density $1.13 \mathrm{e} \AA^{-3}$ ($1 \AA$ from Ru). Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV), and anomalous-dispersion corrections for Ru from Cromer \& Liberman (1970). Table 1 gives the atomic parameters, Table 2 gives selected bond distances and valence angles, and Fig. 1 shows the molecular structure and atomic numbering scheme, drawn by ORTEP (Johnson, 1965).*

[^2]Each octahedral Ru atom is coordinated with both binding and chelating $\mathrm{P}-\mathrm{C}-\mathrm{P}$ ligands, and trans bonded Cl atoms. Three atoms $[\mathrm{Ru}(1), \mathrm{P}(5)$ and $\mathrm{Ru}(3)]$ deviate more than $1 \AA$ from the least-squares plane formed by the 12 ring atoms, and all the other atoms are less than $0.5 \AA$ from this plane.

References

Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1992). C48, 547-549

Structure of (3-Benzylacetylacetonato- $\boldsymbol{\kappa}^{\mathbf{2}} O, O^{\prime}$)carbonyl(triphenylphosphine)rhodium($\mathbf{I})$

By A. Roodt, J. G. Leipoldt, J. C. Swarts and G. J. J. Steyn
Department of Chemistry, University of the Orange Free State, PO Box 339, Bloemfontein 9300, South Africa

(Received 25 March 1991; accepted 8 August 1991)

Abstract

Rh}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\}\right], \quad M_{r}=}\right.\right.\) 582.4, triclinic, $P \overline{\mathrm{I}}, a=13.004$ (2), $b=10.968$ (2), $c=$ 11.230 (1) $\AA, \quad \alpha=114.42$ (1), $\quad \beta=87.57$ (1), $\quad \gamma=$ $112.54(1)^{\circ}, V=1334.1(4) \AA^{3}, Z=2, D_{m}=1.46, D_{x}$ $=1.450 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo K $\alpha)=0.71073 \AA, \quad \mu=$ $7.17 \mathrm{~cm}^{-1}, F(000)=596, T=295 \mathrm{~K}$, final $R=0.0266$ for 3969 observed reflections. The complex has a square-planar geometry about the Rh atom. The bond distances in the coordination polyhedron are: $\mathrm{Rh}-\mathrm{P}=2.243$ (1), $\mathrm{Rh}-\mathrm{O}(1)=2.016$ (2), $\mathrm{Rh}-\mathrm{O}(2)$ $=2.048$ (2) and $\mathrm{Rh}-\mathrm{CO}=1.801$ (4) \AA.

Experimental. The title complex was prepared by mixing equimolar amounts of PPh_{3} and [$\mathrm{Rh}($ bzaa)$(\mathrm{CO})_{2}$] (bzaa $=3$-benzylacetylacetonato anion) in acetone. Slow evaporation of the acetone solution at 295 K yielded yellow needle-like crystals suitable for crystal structure determination. The density was determined by the flotation method in aqueous sodium perchlorate. Data were collected on an Enraf-Nonius CAD-4F diffractometer with graphitemonochromated Mo $K \alpha$ radiation, using a crystal of size $0.20 \times 0.15 \times 0.25 \mathrm{~mm}$. The $\omega / 2 \theta$-scan technique was used with variable scan width $\Delta \omega=(0.60+$
$0.35 \tan \theta)^{\circ}$, a scan speed maximum of $5.49^{\circ} \min ^{-1}$ in ω and a maximum scan time of 60 s per reflection. The unit-cell parameters were determined from a least-squares fit of 25 reflections with $15<\theta<20^{\circ}$; the total measuring range was $3<\theta<25^{\circ}$. The intensity data were corrected for Lorentz and polarization effects, and for absorption with the empirical method by North, Phillips \& Mathews (1968) with minimum and maximum correction factors of 0.961 and 0.999 , respectively. Three control reflections were measured every 3600 s of X-ray exposure time, and varied from the initial value by 2%. The intensity data were corrected for this decay. All possible reffections with $0.07<(\sin \theta) / \lambda<$ $0.60 \AA^{-1}$ in the index range $-18<h<18,0<k<$ $15,-15<l<15$, gave 4490 unique reflections of which 3969 were considered as observed with $I>$ $3 \sigma(I)$, and $R_{\mathrm{int}}=0.0117$. The structure was solved by the heavy-atom method using SHELXS86 (Sheldrick, 1990) and was subjected to least-squares refinement on F with 332 positional and anisotropic thermal parameters for all the non-H atoms, using SHELX76 (Sheldrick, 1976). The H-atom positions were calculated riding on the adjacent C atoms

[^0]: * Lists of structure factors, anisotropic displacement parameters, bond lengths and angles and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54663 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HE0034]

[^1]: * To whom correspondence should be addressed.

[^2]: * Lists of structure factors, bond lengths and angles, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54621 (43 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

